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SCALAR MULTIPLICATION ON HUFF CURVES USING
THE FROBENIUS MAP
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ABSTRACT. This paper introduces the scalar multiplication on Huff el-
liptic curves over a finite field using the Frobenius expansion. Applying
the Frobenius endomorphism on Huff curve, we construct a Frobenius
map defined on the quadratic twist of a Huff curve. To speed up the
scalar multiplication on Huff curves, we use the GLV method combined
with the Frobenius endomorphism over the curve.
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1. INTRODUCTION

Elliptic curve cryptography was independently proposed by Koblitz [9]
and Miller [10] in 1985. The elliptic curve cryptosystem is a public key cryp-
tosystem based on the discrete logarithm problem in the group of points on
a curve. In elliptic curve cryptosystems, the efficiency depends essentially on
the fundamental operation of the scalar multiplication [n]P for a given point
P on an elliptic curve E and an integer n. In general, the computational
speed of a scalar multiplication [n] P depends on finite field operations, curve
point operations, and representation of the scalar n[11, 5].

There is a vast literature on efficient methods for computational speeding
up scalar multipliclation. For elliptic curves, the scalar multiplication can
be done with various methods(a good reference is [1]). If an elliptic curve
admits an efficient endomorphism, its use can speed up scalar multiplication.
In [7], Tijima, Matsuo, Chao and Tsujii presented an efficiently computable
homomorphism on elliptic curves using the Frobnius map on the quadratic
twists of an elliptic curve. The Gallant-Lambert-Vanstone (GLV) gave suit-
able efficiently computable endomorphisms on elliptic curves for speeding
up point multiplication [4].

There are several models of elliptic curves to provide the efficient com-
putation and implement for cryptography in recent year [2, 6]. In [8], Joye,
Tibouchi and Vergnaud revisits a model for elliptic curves over Q introduced
in [6] in 1948 to study a diophantine problem. The Huff’s model for elliptic
curves is given by equation az(y? — 1) = by(z? — 1).

In this paper, we present the Frobenius endomorphism on Huff curves over
a finite field and the scalar multiplication on Huff curves using Frobenius
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expansion. Applying the Frobenius endomorphism on Huff curve, we con-
struct a Frobenius map defined on the quadratic twist of a Huff curve. To
speed up the scalar multiplication on Huff curves, we use the GLV method
combined with the Frobenius endomorphism over the curve.

This paper is organized as follows. Section 1 illustrate some basic notions
on Huff curves and Forbnius endomorphism. We also give expression of the
group law and the birational equivalence between Huff curve and Weierstrass
equation of elliptic curve. Second section describe Frobenius endomorphism
for Huff’s Model and some basic properties.

2. PREMIMINARIES

This section recall some basic notions for Huff curves and Frobenius maps
on elliptic curves.

2.1. Huff Curves. Huff curves was introduced by Joye, Tibouchi and Vergnaud
in 2010 [8]. They revisits a model for elliptic curves over Q introduced in

[6] in 1948 to study a diophantine problem. The Huff’s model for elliptic
curves is given by the following defnition.

Definition 2.1. Let K be a finite field with odd characteristic. The Huff’s
model of an elliptic curve is the affine curve

Hup : ax(y? — 1) = by(a? — 1),
where a,b € K* and a? # b°.

Let P = (z1,y1) and Q = (x2, y2) be two points of H,,(K). The addition
formula becomes P 4+ Q = (x3, y3) with
(@1 +22)(A+yrye) 0 (1 +y2) (1 +2129)

(1 + z122)(1 — y192) (1 —z122) (1 + 3192)

The additive identity is the point (0,0), and the additive inverse of a
point P is the point —P = (—z, —y). The Huff model of elliptic curves in
projective coordinates are defined by

aX(Y? - 7% =Y (X% - Y?),

where a,b # 0 and a? # b?. Huff curves has an additive group structure
together with the identity element O = (0: 0: 1). We note that a point at
infinity is its own inverse. Hence, there are three points at infinity, namly,
(1:0:0),(0:1:0) and (a : b:0). These points at infinity are exactly
the three primitive 2-torsion points of H, 3. The sum of any two of them is
equal to the third one.

2.2. Frobenius map on elliptic curves. Let IF;, be a finite field with

char(F,;) # 2 and F, its algebraic closure. An elliptic curve E over F, is
defined as

E y2:m3+a2x2+a4w+a6
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with the point at infinity O where ag, a4, ag € Fy. The g-th power Frobenius
map 7 of E is defined as

™ BE—>FE
(2,y) = (2%, y7).
By the Hasse’s Theorem, the number of F x-rational points on E satisfieds
BE(Fp) - ¢" — 1] < 2V/gF.
The characteristic polynomial x, € Z[xz] of 7 is given by
Xq(x) = 2% — tx + ¢, |t| <24,
which satisfies
(7% = [t]x + [q])P = OF
for all P € E(F,).

3. FROBENIUS MAP ON HUFF CURVES

Let Fy be a finite field of characteristic different from 2 and let H,; be a
Hulff elliptic curve over F,. We define the g-power Frobenius endomorphism
of H, a,b

T Ha,b — Ha,b
(@,y) — (29, y%)
Now we state the folloiwng lemmas to use the main result of this section.

Lemma 3.1. Let K be a finite field with odd characteristic. Then, every
Huff curves Hgy, is birationally equivalent over K to an elliptic curve E
given by the Weierstrass equation

E : v® =u(u+ad®)(u+b?).
Proof. See [8] O

From Lemma 3.1, one can see that there exists an elliptic curve E over

F, such that H, ,(F,) = E(F,). Let o be the isomorphism
g Ha,b — F
(z,y) — (u,v)

where

ab(bz — ay) ab(b®> —a .
(1) (u,v) :( f(a$+by)’ 7C(L.”]J+by))7 if ax # by.

The only point on H with ax = by is (0,0) which is mapped to O. The
inverse transformation is given by
o' E— Hyy
(u,v) — (2,y),

where

b 2 b2
(z,y) =( (uta ), alut ))7 if v # 0.
v v
The points (u,v) with v = 0 are the points of order 2 which get sent to the

points at infinity on Hyp.

225



226

G. Y. Sohn

Lemma 3.2. Let H,, be a Huff curve defined over Fy and E be the birational
equivalent elliptic curve of Hgyp over Fy. Let tE(Fy) =g+ 1—t and let o
be the birational map defined as above. Let m be the q-power Frobenius
endomorphism over E. Define 1) = o 'no. Then

(1) ¢ € End(Hgyp), (i-e., ¥ is an endomorphism of Hgyp).

(2) For all P € Hyp(Fy) we have
VA(P) — [t (P) + [a)P = On,,

Proof. First note that o an isomorphism defined over Fy, that 7 is an isogeny
from E to itself defined over F,. Hence ¢ is an isogeny of Hy 3 to itself defined
over Fy. Therefore ¢ is a group homomorphism.

For P € H,(F,), let’s denote o(P) = Q € E(F,). Then we have (72 —
[t]m + [¢])Q = Op. Hence,

o~ (7® — [t]r + [q))o(P) = Om,,.
Therefore

V3 (P) — [t](P) + [g]P = O,

Now we have the main result of this section.

Theorem 3.3. Let H,p be a Huff curve defined over a finite field Fy and
1H,p(Fq) = ¢+ 1 —t. Then the Frobenius endomorsphim of Hyp satisfies

(7%~ [tlm + [g])P = O,

for all P € Hyp(Fy).

Proof. Let E be the birational equivalent elliptic curve of H,; defnied over
F,, and ¢ be the endomorphism of H,p in Lemma 3.2. By definition of ¢,
for all P = (z,y) € Hap(Fy),

a xr — a a 2 _ (L2
W) = (o~ e,0) = (0~ (o), = )

_ 0_1<(ab)q(b:p —ay)? (ab)?(b? — a?)4
Gy —ai  (by—az)?

) = ),

where a,b € F,,.
Hence we have for all P € H,,(F,), ¥(P) = 7(P) and § E(Fy) = §H, 5(Fy) =
q+1—t. Hence by Lemma 3.2, we can complete the proof of Theorem. [J

4. FROBENIUS MAP ON QUADRATIC TWISTS OF AN HUFF CURVES

In this section, we construct a Frobenius map on quadratic twist of a
Huff curve according to the Frobenius map on Huff curve and apply the
GLV method.

The quadratic twist of a Huff curve is

Hé’b : auv(y2 —d) = by(:c2 —d)
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where a,b,d € F; and a? # 2. (d € F; is a non-square.) The sum of
two finite points Py = (z1,y1) and P, = (x2,y2) such that z1ze # +d and
y1y2 # +d is given by (z3,ys) where

d(z1 + x2)(d + y122) d(y1 + y2)(d + z122)
r3 = and y3 = .
(d + 2122)(d — y192) (d+ y1y2)(d — 2122)
The corresponding isomorphism ¢ : Hgp — Hfl , defined over F 2 is given

Theorem 4.1. Let H,p be a Huff curve defined over Fy and Hé’b be a
quadratic twist of Huff curve Hayp. Let $Hqp(Fy) = q+1—1t and let ¢ is an
isomorphism from Hygy to Hé,b over Fy(v/d). Let T be the q-power frobenius
map on H,p. Define 7,5: ¢7o~t. Then for all P € Hé’b(Fq), we have

V*(P) = [t])(P) + [q]P = Ope .
Proof. The proof is similar to Theorem 3.3, we omit it here. O

The GLV method gave efficiently computable homomorphism of elliptic
curve where E is defined over [, with the large characteristic. The following
map can be used for the GLV method to point multiplication on Huff curves
by extending the method in Galbraith et. al. [3].

Theorem 4.2. Let H,p be a Huff curve over Fy with ¢ +1 —t points. Let
m be the g-power Frobenius map on Hyp. Write Hfl,b for the quadratic twist
of Hayp over Fp2 and let ¢ : Hyp — Hfl’b be the twisting isomorphism defined
over Foa. Let ) = ¢pmo~L. Let THchtz,b(qu) be a prime such thatr > 2q. Let
P e H!(Fp)lr]. Then (P) = [P where X\ € Z/rZ satisfies N> +1 = 0
(mod r). Also, we have ¢)(P)?> + P = Opt .

Proof. Since ¢ and 7 are group homomorphisms it follows that ¢ is too. We
have H,p(Fqs) = H. ,(Fqs) as groups.

If r|¢H. ,(Fq) is prime such that r > 2¢, then r { tH,p(Fg2) = (¢ +1 -
t)(q+1+t) and r|tH, ,(Fgs) = tHap(Fo2)tHL ,(Fg2) but r2|HL | (Fys). This
implies that for P € H ,(Fg)[r], ¢/(P) belongs to Hy ,(Fg)[r]. It follows
that for for P € Hé,b(]qu)[r], there exists A € Z such that ¢(P) = [\ P.

By definition, (z,y) = (67) (7. J5) = ¢( . o) = (VA "2%, VT "y?)

for P = (z,y) € H.,(F,). Also, since 27 = z, ng =y for x,y € Fp, we
have

Vdz? dy?

2
where d € Fp2 (ie., d?” = d) and Vd ¢ Fg2 (and so, Vd" = —\/d). There-
fore,

(.y) =( ) = (=2.—y) = ().

V*(P)+ P =0p .
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5. CONCLUSION

In this paper, we presented the Frobenius endomorphism of Huff curve
over a finite field. Based on it, we constructed a Frobenius map defined on
the quadratic twist of a Huff curve and showed how to it to accelerate the
scalar multiplication on this curve.
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